
Contents
Database Tuning 1

Disk Caches . 2
Tuning the Cache . 3
Tuning the Schema . 5
Denormalization . 12

Repeating Groups . 14
Partitioning . 15

Tuning the Data Manipulation Language 16
Tools . 19
Managing Physical Resources . 20
Influencing the Optimizer . 21
Useful online references to understand relevant subtopics 23

Credits: contents presented here are taken from the book Database
Systems An application oriented approach 2nd Edition by Michael
Kifer, Arthur Bernstein, Philip M. Lewis

Database Tuning
Tuning is the process of modifying an application and adjusting the
parameters of the underlying DBMS to improve performance. Perfor-
mance is measured in terms of the response time seen by a user (the time it takes
to perform a task—for example, to execute an SQL statement) and throughput
(the amount of work completed in a unit of time). It is important to realize that
tuning does not affect the semantics of the system: the tuned and the original
systems return the same information to the user and are left in the same final
state when subjected to the same sequence of requests.

The first step in tuning a system is to determine where the bottlenecks are.
If the system spends only 2% of its time executing a particular (hardware or
software) module, then no matter how inefficient it is, revising or replacing it
can improve performance by at most 2%.

An application and DBMS, taken together, form an exceedingly com-
plicated system, and many different aspects of it are subject to tuning.

The SQL code and schema are at the highest level. Tuning at this level is
concerned with such issues as how queries should be expressed and what indices
should be created.

This section discusses methods that you can use to encourage the DBMS to
use the technique that performs the best for the particular application you are
implementing.

The DBMS occupies the next level. Examples of performance issues at this level
are the physical placement of data on secondary storage and how the DBMS

1

manages its buffers. Decisions in this area are largely under the control of the
database administrator, and hence the application programmer can influence
them indirectly.

The lowest tuning level is the hardware level. In order to perform well the sys-
tem must be supported by CPUs and secondary storage devices, and adequate
communication facilities. The specification of these resources is generally be-
yond the control of the application programmer, and we do not discuss these
issues.

Disk Caches
There is huge difference between the speed of the CPU and the time to transfer
a page between the CPU and mass store. In recognition of this, the cost of a
query plan is measured as the estimated number of page transfers it incurs, and
the job of the query optimizer is to find the plan that minimizes this number.
While that plan is generally a good one, its cost is often still significant, and
other measures are necessary to make query processing efficient. One of the
most significant of these is the cache.

A cache is a main memory buffer in the DBMS in which recently ac-
cessed database pages are stored. When a transaction accesses a database
item, the DBMS brings the database page(s) on disk that contain that item into
the cache and then copies the value of the item from the cache into the applica-
tion’s buffer. The page is generally retained in the cache under the assumption
that there is a high probability that the application will either update the item
or read another item in the same page at a later time. Or another application
might concurrently reference an item in the page. In either case, a disk access
will have been avoided since the page will be directly accessible in the cache.
For example, an index page has a high probability of being accessed frequently.

Although it is natural to think of the database item as a page of a table or
an index, it can also be the execution plan for an SQL statement or a stored
procedure. In fact, some DBMSs maintain a separate procedure cache for this
purpose. Although I/O cost is the major limitation on the performance of an
application, the CPU cost of building an appropriate execution plan is also
substantial. Hence, once an execution plan has been determined, it is saved
since it might be possible to reuse it. Prior to preparing a new execution plan,
existing plans are scanned to see if any are usable.

If a database item is to be updated, the database page containing the item must
first be brought into the cache (if it is not already there), and it is the cache
copy of the page that is modified (not the original copy in the database).

Eventually the cache becomes full, and any new page fetched from the database
must overwrite a page, p, in the cache. If p has not been updated since arriving
in the cache, its contents are identical to the corresponding page in the database,
and hence it can simply be overwritten by the new page. However, if p has been

2

updated since arriving in the cache, it must be written back to the database
before the space it occupies in the cache can be freed. In order to distinguish
between these two cases, the DBMS marks pages that have been updated as
dirty and those that have not as clean.

Decisions concerning which pages should be kept in the cache and which can be
overwritten when a new page is to be fetched are made by a page replacement
algorithm whose goal is to maximize the number of database accesses that can
be satisfied by pages in the cache. A least recently used (LRU) algorithm,
for example, selects the least recently used page in the cache as the one to be
replaced. It concludes that since no application has accessed the page recently
it is no longer useful. Hence it tends to keep actively used pages in the cache.

A more sophisticated algorithm takes into account the circumstances under
which a page was brought into the cache. For example, if the page was brought in
as part of a table scan (which is typical, for example, when sorts are performed),
once the rows in the page have been accessed it is not likely that the application
will reference the page again. In this case a most recently used algorithm
(MRU) is preferable. Hence a page replacement policy might use a combination
of an LRU and an MRU algorithm depending on what information is contained
in the page (index or data) and in what context the page is referenced.

If a transaction’s access request can be satisfied from the cache, a hit is said to
have taken place; if it cannot be satisfied, then a miss has occurred. To obtain
a high throughput, many designers consider it mandatory to obtain a hit rate
of over 90% (90% of the accesses can be satisfied from the cache). To achieve
such a hit rate, the cache size must often be a significant percentage of the size
of the database. Cache sizes in the megabyte range are normal. In some large
applications, the cache size is measured in tens of gigabytes.

Tuning the Cache
Now that you have an understanding of how the cache works, the question is,
“What can the application programmer or the database administrator do to
optimize the way the DBMS uses the cache to improve the performance of her
application?”

• DBMSs generally offer several mechanisms that can be invoked for this
purpose. Some DBMSs allow pieces to be carved out of the (default)
cache to be managed as separate caches. The programmer can then bind
a particular item (e.g., a table or an index) to a specific cache and in
so doing cause all pages of that item to be buffered in that cache. For
example, if tables T1, and T2 are bound to different caches, a page of T;
can never overwrite a page of T2. This approach might be useful if T2 was
not used very often but fast response time was required of the application
that referenced it.

• Some DBMSs allow a particular cache to be subdivided into several dis-

3

tinct pools of buffers of different sizes. For example, while by default all
buffers in a cache might have 2K bytes, it might be possible to reallocate
the cache storage area so that several buffer pools are created with sizes
2K, 4K, 8K, etc. If a table is bound to such a cache, the query optimizer
then has the option of choosing the I/O size that best suits a query plan
that accesses that table. For example, the page size on secondary storage
might be 2K bytes, and the DBMS might allocate disk space to a table in
contiguous blocks of eight pages. It then follows that the time to retrieve
an eight-page block is not much larger than the time to retrieve a single
page since the seek time is the same in both cases. If the query plan call
for a table scan, and the table is bound to a cache that has a 16K pool of
buffers, the query optimizer can save time by retrieving eight pages with
a single I/O operation.

Some query optimizers take this idea one step further by prefetching pages.
Ordinarily, during the scan of a table or index, the next page is requested
when the page fetched by the previous I/O operation has been scanned. The
scan must then wait until the I/O operation for the next page completes. It is
possible to improve on this in situations, such as scans, in which the optimizer
can anticipate future requests. In such cases the optimizer can initiate the I/O
operation for a page that has not yet been requested. Then, if the time to
process a page is long enough, the next page will already be in the cache when
it is requested.

By using both prefetching and a large I/O size, the time to do a table scan
can be greatly reduced. This possible reduction has an impact on the query
optimizer’s choice between an access path that involves an index and an access
path that uses a table scan for a particular query. It also raises the question of
whether the application programmer should create an index for that query.

• Some DBMSs provide commands that allow the page replacement policy
for a cache to be specified. This is particularly useful when multiple caches
are used. A policy appropriate to the items bound to the cache can then
be chosen.

In addition to configuring a data cache to best suit the application, the program-
mer can design the application to make the best use possible of a procedure cache.
For example, performance can be improved by not using explicit constants in
SQL statements. The execution plan for the statement

SELECT P.Name
FROM PROFESSOR P
WHERE P.DeptId = 'EE'

is essentially the same as the execution plan for the statement with the constant
EE replaced by CS. But since the two statements are different, the DBMS
might miss this fact when it scans the procedure cache looking for an execution
plan, and as a result the DBMS might create a separate execution plan for

4

each statement. It is possible to eliminate this overhead by instead using the
statement

SELECT P.Name
FROM PROFESSOR P
WHERE P.DeptId = :deptid

where deptid is a host variable, and successively assigning EE and CS to that
variable. Since the same statement is now executed twice, the execution plan
created when the statement is first executed will be reused when it is executed
for the second time.

Tuning the Schema
The schema you design for your database is at the heart of the application. If
the schema is well designed, it is possible to write SQL statements that perform
efficiently. Your strategy in tuning at the application level is to first design a
normalized database and then estimate the sizes of the tables, the distribution
of column values, and the nature and frequency of the queries and updates that
will be addressed to the database. Adjustments to the normalized schema to
facilitate the most frequent operations follow from these estimates. Adding in-
dices is the most important of these adjustments, and we discuss it first. Another
technique is denormalization, which involves adding redundancy so that items of
information that are generally associated with one another through frequently
executed queries can be found in one place. Finally, we discuss partitioning,
which is a rather specialized technique for dealing with very large tables.

1. Indices Different query plans for a particular query might have wildly
different costs and in many cases the differences are a function of the
indices used in the plan. For better or worse, the choice of plan is made
by the optimizer based on the indices available to it at the time the query
is prepared. It is the role of the application programmer to “encourage”
a good choice by making sure that appropriate indices have been created.
In this section our goal is to expose the reasoning a programmer might
use in deciding what indices to create.

Indices might seem like the ultimate database tuning device. However, free com-
putational lunches are rare. Each index carries an associated storage overhead.
More importantly, extra indices might significantly increase the processing time
of statements that modify the database since every index must be updated
whenever the table it references is changed. Thus, you should think twice be-
fore creating an index on a table where rows are frequently inserted or deleted.
Similarly, you should think twice before creating an index with a search key
involving a frequently updated column. Will the performance gain realized in
processing queries be sufficient to compensate for the added cost of process-
ing statements that modify the table? To illustrate some of the considerations
involved in the tuning process, consider the following examples

5

1. Consider the query

SELECT P.DeptId
FROM PROFESSOR P
WHERE P.Name = :name

Since the primary key of PROFESSOR is Id, we can expect that the DBMS has
created a clustered index on that attribute. That index is no help for this query
because we need a quick way to find all professors with a particular name. One
possibility is to explicitly create an unclustered index on Name. Assuming that
only a few professors have the same name, this index should speed things up.

But suppose this is not the case; many professors have the same name, Then
a better solution is to make the index on Name clustered and the index on Id
unclustered. As a result, rows with the same name will be grouped together
and can be retrieved in a single (or a few) I/O operations. The index could be
a B+ tree or a hash (since the condition on Name involves equality).

The lesson here is that since a table can have only one clustered index, it is
pointless to waste it on an attribute that cannot take advantage of clustering.
DBMSs generally create a clustered index on the primary key, but you should
not be intimidated by this. An unclustered index on the primary-key attribute
is sufficient to guarantee the key’s uniqueness, and since at most one row can
have a particular key value, clustering cannot be justified as a means of grouping
rows with the same value of the attribute. So, if we are unlikely to want to order
rows based on the primary key (as is the case with PROFESSOR), there is no
reason to use a clustered index for this purpose.

Keep in mind that replacing one clustered index with another is a time consum-
ing operation since it implies a complete reorganization of the storage structure.
You certainly do not want to create a new clustered index each time you execute
a query. You should analyze your application in advance, considering the kinds
of queries you expect and their frequency, create the clustered index that will
do the most good, and stick with it until performance considerations indicate
that the system needs a tune-up.

2. Consider the query

SELECT T.Name, T.CrsCode
FROM TRANSCRIPT T
WHERE T.Grade = :grade

One is tempted to cluster the rows around Grade since we want to retrieve all
rows with the same grade, but suppose that our first priority is to speed the
response to a different query, a request for a class roster, and for that purpose
we use a Clustered index on the primary key (CrsCode, Semester, StudlId). We
could create an unclustered index on Grade, but using such an index might
not be a good idea. In most cases the number of rows with a particular grade
is a large fraction of the total number of rows (since the domain of Grade is
small). In those cases we can expect that a large fraction of the table’s pages

6

will be fetched, one by one, in random order, through the unclustered index.
Unfortunately, the optimizer does not know what grade will be supplied at run
time, and even if it did, it would not know which ones produced small result
sets (we will correct this inadequacy shortly). Hence a table scan might be a
better solution.

A number of lessons can be drawn from this example. First, an unclustered
index is appropriate if only a few rows of a table are to be retrieved, and a
full table scan is appropriate if a large fraction of the rows are to be retrieved.
Determining a reasonable break-even point is not easy. One vendor states that
a table scan is appropriate if more than 20% of the rows of the table are to
be accessed. A more cautious approach would be to simulate the workload if
more than a few rows are to be accessed to determine if building an index is a
good idea. Second, do not create an index on a column with a small domain
if attribute values tend to be evenly distributed over the domain. The query
optimizer is unlikely to choose such an index since it will recognize that the
selectivity of the access path through this index is large for any value of search
key. Finally, do not create indices indiscriminately: they are costly to maintain,
and, with the techniques described in Section Disk Cache, table scans can be
quite fast.

3. Suppose that the most frequent access path to TRANSCRIPT selects rows
based on a condition involving both StudId and CrsCode. A less frequently
used path selects rows based on a condition on Semester. If we build
one index on (StudId,CrsCode) (actually an index on the primary key
(StudId,CrsCode, Semester) would work fine) and another on Semester,
which should be clustered? At first glance, it might seem that the index
on (StudId,CrsCode) should be clustered because it is the main access
path. However, even though (StudId, CrsCode) is not a candidate key,
the number of TRANSCRIPT rows that agree on both of these attributes
will be one in almost all cases—only when a student retakes a course
can this number be larger than one. Therefore, clustering around (StudId,
CrsCode) will not yield significant benefits. Also, it is not likely that range
queries will be asked against this pair of attributes, so the overhead of a
B+ tree index does not seem justified—a hash index is probably the best
solution here. On the other hand, a clustered B+ tree index on Semester
can greatly improve the efficiency of selections and joins on that attribute
and makes an excellent choice for a secondary access path.

The lesson here is that clustering is useful to group together rows that might be
output in a result set. These rows might be grouped because they all agree on
the value of an attribute(s) or because they fall within a range of values of that
attribute(s). In either case, when a choice has to be made as to what attribute
to cluster on, you should make the choice based on the size of the result sets
you expect in your application.

4. Assume the PROFESSOR table has the additional attribute Salary, and
suppose we want to optimize the performance of the range query:

7

SELECT P.Name
FROM PROFESSOR P
WHERE P.Salary BETWEEN :lower AND :upper

The analysis here is similar to that of example 1 with the exception that we now
want a clustered index on Salary and it must be a B+ tree.

5. If two different queries would benefit from two different clustered indices
on the same table, we have a problem since only one clustered index is
possible. One solution is to make it possible for the optimizer to use
an index-only strategy. For example, suppose that TEACHING already
has a clustered B+ tree index on Semester, but another important query
would benefit from a clustered index on ProfId in order to quickly access
the course codes associated with a given professor. We can sidestep the
problem by creating an unclustered B+ tree index with search key (ProfId,
CrsCode). Then all the information required by the query is contained
in the index (and the index is often referred to as a covering index), and
TEACHING does not have to be accessed at all! We simply search down
the index using ProfId to the leaf level. Since the values of CrsCode at
that level are clustered around ProfId, we can scan forward from that
point at the leaf level of the index to get the required result set using
only the index entries. This approach produces the same effect as that of
a clustered index with search key (ProfId, CrsCode) on TEACHING (in
fact, it is more efficient because the index is smaller and hence scanning
a section of the leaf level requires fewer I/O operations than scanning a
section of TEACHING).

Index-only query processing comes in two varieties. In this example we searched
the index using ProfId to quickly locate the associated course codes. Suppose,
however, another query required that we find the ProfIds of all professors who
had taught a particular course. Unfortunately, although all the information we
need is in the index, it cannot be searched because CrsCode is not the first
attribute of the search key. But all is not lost. Another way to produce the
desired result set is to scan the entire leaf level of the index. This is not as
efficient as a search, but it might be better than having to scan the entire data
file (the index is smaller!) or create and use an unclustered index on CrsCode.

6. The ability to nest queries is one of the most powerful features of SQL.
Unfortunately, however, nested queries are very difficult to optimize. Con-
sider the query

SELECT P.Name, C.CrsName
FROM PROFESSOR P, COURSE C
WHERE P.Department = 'CS' AND C.DeptId = 'MAT' AND
C.CrsCode IN

(SELECT T.CrsCode
FROM TEACHING T

WHERE T.Semester = 'S2003' AND T.ProfId = P.Id)

8

that returns a set of rows in which the value of the first attribute is the name of
a CS professor who has taught a course in the Math Department in the spring
of 2003 and the value of the second is the name of one such course.

Typically, a query optimizer splits this query into two separate parts. The inner
query is considered as an independently optimized unit. The outer query is also
optimized independently (with the result set of the inner SELECT statement
viewed as a database relation). In this case, the subquery is correlated, so it is
crucial that it be executed efficiently since it will be executed many times.

For example, a clustered index on TEACHING with search key (ProfId,
Semester) would permit quick retrieval of all courses taught by a particular
professor in a semester (and hopefully this is a small set). If possible (as in
this example), the search key should involve all the attributes of the WHERE
clause to avoid retrieving rows unnecessarily.

However, there is another point to note here. Because the two queries are
optimized separately, certain alternatives might not be considered by the opti-
mizer. For instance, the use of a clustered index on TEACHING with search key
CrsCode would not be considered since the correlated nested subquery produces
a set of course codes for each value of P.Id that is supplied and CrsCode is not
even mentioned in the WHERE clause of that subquery. On the other hand, it
is easy to see that the above query is equivalent to

SELECT C.CrsName, P.Name
FROM PROFESSOR P, TEACHING T, COURSE C
WHERE _T.Semester='S2003' AND P. Department='CS'
AND C.DeptId = 'MAT' AND P.Id = T.ProfId AND T.CrsCode=C.CrsCode

and the use of that index would be considered in optimizing this query. One
strategy that can take advantage of this index corresponds to the following
expression:

Figure 1: eqn

After computing

,

the index for CrsCode in TEACHING can be used to compute the join

in the index-nested loops algorithm.

It should be remarked that some query optimizers do, in fact, try to eliminate

9

nested subqueries and take other steps to reduce the cost of processing them.
However, it is still a good idea to avoid query nesting whenever possible. This
strategy may or may not be the best for this query depending on the sizes of
the relations, selectivity of the attributes, and other parameters.

7. Consider the query

SELECT T.Semester, COUNT(*)
FROM TRANSCRIPT T
WHERE T.Grade <= :grade
GROUP BY T.Semester

Our first inclination is to create a clustered B+ tree on Grade since a range is
indicated. Our intention is to influence the optimizer to first retrieve all rows
satisfying the condition, sort them on Semester (which brings all the members
of a group together), and then count the size of each group. But this is not
necessarily a good idea. The condition is not selective, so we will have to sort a
large intermediate table.

Suppose instead we reverse the order of operations: we do the sort before the
selection. In fact, if we choose a clustered index on Semester, the table is sorted
before the query is executed. Since the grouping is already done, all we have
to do is scan the table and count all the qualifying rows in each group clearly
a better plan when the condition is not selective. Note that the index can be
either a B+ tree or a hash. In both cases the rows in a group will be together.

The lesson here is that an index is not simply an access path to data; it is a way
of storing the data. In this example, the query plan does not actually use the
index to find a particular row but simply takes advantage of the way the rows
are stored.

8. Consider the query

SELECT S.Name
FROM STUDENT S, TRANSCRIPT T
WHERE S.Id = T.StudId AND T.CrsCode = 'CS305'

If appropriate indices are not present, the optimizer might choose a block-nested
loops join or a sort-merge join as the basis of a query plan. These choices
are likely to be inefficient, since the size of the result set that we expect is
considerably smaller than the size of the tables involved. As a general rule of
thumb, you should investigate the possibility of an index-nested loops join when
you expect a small result set, reserving other methods for large result sets.

So how can we encourage the optimizer to consider an index-nested approach?
If we create a clustered index on TRANSCRIPT with search key CrsCode, the
optimizer has a way of quickly finding, as part of the outer loop of the join, all
students who have taken CS305. We can easily ensure that such an index exists
since CrsCode is an attribute in the primary key of the table: all we have to do

10

is make sure that it is declared as the first attribute of the key. The DBMS will
generally oblige by creating a B+ tree on the primary key.

For the inner loop of the join we need an index on STUDENT with search key
Id. This is no problem at all since Id is the primary key, The DBMS will create
an index, and we do not care whether it is clustered or unclustered, B+ tree or
hash, since Id is unique.

9. Consider the query :

SELECT Te.ProfId, Tr.StudId
FROM TEACHING Te, TRANSCRIPT Tr
WHERE Te. Semester = Tr.Semester AND Te.CrsCode = Tr.CrsCode

We expect the size of the result set to be much larger than the size of either table.
Hence, a sort-merge algorithm is likely to be efficient in performing the join. We
can make such an algorithm attractive to the optimizer by using clustered B+
indices on the tables involved.

For example, if such an index (with search key : (Semester, CrsCode)) is created
on TRANSCRIPT, the relation will already be sorted on the join attributes and
a significant part of the sorting step of the algorithm comes for free. Since these
two attributes are a part of the primary key of the table, the DBMS has already
created such an index—all we need to do is make sure that the ordering of
primary-key attributes is (Semester, CrsCode, : StudId).

10. Consider a database with two tables: PROJECTPART(ProjId, PartId),
which relates a project to each part that it uses, and PARTSUP-
PLIER(PartId, SupplId), which relates a part to each supplier that sells
that part. The query

SELECT P.ProjId, S.Supplid
FROM PROJECTPART P, PARTSUPPLIER S
WHERE P.PartId = S.PartId

produces a (ProjId, SupplId) pair for each project that uses a part that the
supplier sells. An index-nested loops join could scan PROJECTPART and use
an index with search key Part Id on PARTSUPPLIER to find the rows of that
table that match each scanned row. Encouraging the use of such an algorithm,
however, is probably a bad idea since many rows of PARTSUPPLIER join with
each row of PROJECTPART. Reversing the tables so that PARTSUPPLIER
is scanned produces the same result. Hence a sort-merge or hash join might
be less expensive. The lesson here is that it is not a good idea to create an
index unless you are sure ; it is going to be of use. In this case it might lead to
the wrong query plan and result in added overhead when the indexed table is
updated.

Miscellaneous considerations. A foreign-key constraint can be essential in
supporting the integrity of your database but introduces a hidden cost since it
must be checked when certain modifications are made to the tables that it relates.

11

Suppose such a constraint is declared on attribute A1 of table T1 referring to
attribute A2 of table T2. When a row, t1, is inserted in T1, the DBMS must
ensure that there is a row in T2 in which the value of A2 matches the value of
A1 in t1. Fortunately, this is hot a problem since A2 must be a key of T2 and
hence there is an index with search key A2 that can be used to make the check
quickly. Unfortunately, this approach does not work in reverse. If a row, t2,
of T2 is deleted, the DBMS must check that there does not exist a row of T1
that refers to it. Since A1 is not a key of T1, T1 might not have an index with
search key A1, and if not, a table scan will be required to check the foreign-key
constraint. If T1 is large and rows of T2 are deleted or updated frequently, this
table scan can be a significant source of overhead. In that case, an index on T1
with search key A1 should be created.

A common query is one that counts the rows in a table using COUNT. Such
a query can result in a table scan if a proper index is not available. The table
scan can be replaced by an index scan if the index is over a column that has
a NOT NULL constraint because a row in which that attribute is null would
not be indexed. The I/O cost of an index scan can be substantially less since
the leaf level of the index can be packed into fewer pages than the table. Note
that even if the DBMS has created statistics describing the table, the values
will generally not be current and so cannot be used.

Denormalization
Denormalization refers to situations in which an attempt is made to improve
performance of read-only queries by adding redundant information to a table.
It reverses the normalization process and results in a violation of normal form
conditions.

Denormalization often takes the form of adding a redundant column. For exam-
ple, in order to print a class roster that lists student names, a join is required
between the tables STUDENT and TRANSCRIPT. The join can be avoided by
adding Name column to TRANSCRIPT. In contrast to the previous example,
STUDENT contains other information (e.g., Address), so denormalization does
not eliminate the need to retain STUDENT.

As another example, a join involving the tables STUDENT and TRANSCRIPT
is needed to produce a result set that associates a student’s name with her cu-
mulative grade point average. If the query is performed frequently, we might im-
prove performance by adding a GPA column to the STUDENT table. Although
prior to the modification the GPA was not stored in the database, redundancy
has been added since the GPA can be computed from TRANSCRIPT. This
is a particularly attractive example of denormalization because the additional
storage requirements are nominal.

But do not get carried away with denormalization. In addition to the extra
storage required, a price has to be paid to maintain consistency. In this case,
every time a grade is changed or a new row added to TRANSCRIPT, GPA has

12

to be updated. This might be done by the transaction doing the modification,
adding to its complication and degrading its performance. A better alternative
is to add a trigger that updates STUDENT when the modification takes place.
Although the performance penalty is not avoided, complication is reduced and
the possibility that transactions do not properly maintain consistency is avoided.

There is no general rule on when to denormalize. Here is an incomplete list of
conflicting guidelines that need to be evaluated against each particular mix of
transactions:

1. Normalization can lower the demand for storage space since it usually
eliminates redundant data and null values. Tables and rows are smaller,
reducing the amount of I/O that must be performed and allowing more
rows to fit into the cache.

2. Denormalization increases storage requirements since redundant data is
added. When the degree of redundancy is low, however, normalization
can also increase storage requirements. For instance, in the PERSON
relation of the following figure

Figure 2: PERSON RELATION

suppose that most people have just one phone number and one child. In this
case, schema decomposition actually increases storage requirements (since SSN
must be repeated in each table) without bringing tangible benefits. The same
applies to the decomposition of HASACCOUNT in the following Figure

which can increase the overhead for update transactions. The reason is that
verification of the FD

ClientId OfficeId -> AccountNumber

after an update requires a join because the attributes ClientId and OfficelId
belong to different relations in the decomposition.

13

Figure 3: DecompositionofHASACCOUNT

3. Normalization generally makes answering complex queries (for example,
in OLAP systems) less efficient because joins must be performed during
query evaluation.

4. Normalization can make answering simple queries (for example, in OLTP
systems) more efficient because such queries often involve a small number
of attributes that belong to the same relation. Since decomposed relations
have fewer tuples, the tuples that need to be scanned during the evaluation
of a simple query are likely to be fewer,

5. Normalization generally makes simple update transactions more efficient
since it tends to reduce the number of indices per table.

6. Normalization might make complex update transactions (such as Raise
the salary of all professors who taught every course required for computer
science majors) less efficient since they might involve complex queries (and
thus might require complex joins).

7. Normalization results in more tables, and hence more clustered indices,
which translates into more flexibility when tuning queries.

Repeating Groups

In some situations the same information can be stored in either columns or rows,
and the choice can be based on performance considerations. For example, sup-
pose one wanted to store the total sales of each salesperson in each sales region
of the country. One possible solution is to store the data for each salesperson
in separate rows:

CREATE TABLE SALES (
Id INTEGER,

14

Region CHAR (6),
TotalSales DECIMAL)

The pair (Region, TotalSales) is referred to as a repeating group. Unfortunately,
this requires retrieving multiple rows to access information about a single sales-
person. Alternatively, the information describing a salesperson could be com-
pacted into a single row. Assuming three regions, we could store the data using
this table:

CREATE TABLE SALES (
Id INTEGER,

RegioniSales DECIMAL,
Region2Sales DECIMAL,
Region3Sales DECIMAL)

This schema has the limitation that only a fixed number of sales regions can be
accommodated, but if it is generally the case that all of the information about
a salesperson is retrieved at the same time, it might yield performance benefits.

Partitioning

The I/O cost of accessing a very large table can be reduced by explicitly splitting
the table (in the schema) into partitions. One reason for doing this is to separate
frequently accessed data in the table from data that is rarely referenced. By
packing data that is frequently accessed into fewer pages, the number of I/O
operations can be reduced and it is less likely that pages in the cache contain
data that is not being referenced. A second reason is to make it possible to
access different parts of the table concurrently, and we discuss this in section
Managing Pysical Resources . With horizontal partitioning, all partitions have
the same set of columns and each contains a subset of the rows. The partitioning
of the rows is based on a natural criterion that populates the partitions with
disjoint subsets.

For example, the table STUDENT might be partitioned into two partitions.
Rows describing inactive students, those who have graduated, might be in a
partition named ALUMNI. Rows describing active students, the current under-
graduates, might be in a partition called CURRENT_STUDENTS. A page of
CURRENT_STUDENTS in the cache is more likely to be referenced again than
a page of ALUMNI since most references are to active students and a page of
CURRENT_STUDENTS contains only those students. This reduces the num-
ber of I/O operations. Similarly, the cost of a scan to retrieve undergraduate
information is greatly reduced.

With vertical partitioning, subsets of the columns of a table form the partitions.
This can be useful when a table has many columns, and hence long rows, and
some of the columns are infrequently referenced. Once again, without partition-
ing, performance is degraded by the need to transfer inactive data from the disk
when active data is referenced. By storing the infrequently accessed columns

15

in a separate partition, this problem can be alleviated. Oracle, for example,
effectively separates infrequently accessed columns without requiring explicit
partitioning. These columns are designated in the CREATE TABLE statement
of a table that has an integrated, clustered index. In this case the infrequently
accessed columns are not stored in the leaf level of the index but instead are
stored in overflow pages linked to leaf pages. Scans involving only frequently
accessed columns can skip the overflow pages.

An astute reader must have noticed that vertical partitioning is conceptually the
same as schema decomposition. In particular, partitions must form a lossless
decomposition of the original relation, which can be ensured by, for example, in-
cluding a key of the relation in all partitions. However, partitioning is typically
driven not by the need to normalize the schema but by other considerations.
For instance, if in a STUDENT table the attributes Address and Phone are
accessed infrequently, they (and the student Id) might be separated into a dif-
ferent partition even though the STUDENT table is already in BCNE. With
this secondary information split off, the main partition of the STUDENT table
becomes smaller and thus queries involving this table run faster.

Partitioning involves a trade-off, and in this case the price that must be paid is
the additional complexity of managing and accessing multiple tables. Hence, it
should be used only when the performance benefits are clear.

Tuning the Data Manipulation Language
A modification of the schema of a particular table can have a global impact: it
can affect (hopefully improve) the performance of all the SQL statements that
access the table. A modification to a query or a statement of the DBMS has
a local impact: it affects the performance of only that statement. There are
many nuggets of wisdom that we could include here. We have chosen just a few
based on what we think offers interesting insights into SQL and the way it is
processed by a DBMS.

Avoid sorts. Sorting is expensive and should be avoided if possible. You
need to be aware of the kinds of queries that might cause an optimizer to
introduce a sort into the query plan and avoid those queries if possible. In
addition to the sort-merge join, duplicate elimination involves sorting. Hence,
do not use DISTINCT unless it is important in the application. Set operators
like UNION and EXCEPT also involve a sort to find duplicates, but their use
may be unavoidable (however, some DBMSs provide the UNION ALL operator,
which does not eliminate duplicates and hence does not involve a sort).

A sort is necessary to process an ORDER BY clause (so you should carefully
consider whether an ordering on the output is necessary), and a GROUP BY
clause will also frequently involve a sort. If sorting is unavoidable, consider
presorting by using a clustered index (as in example 6 of section Indices).

Do not scan unnecessarily. Use of “not equals” in a WHERE condition

16

is likely to result in a scan. For example, the optimizer might not use an
index on CreditHours when evaluating the condition 𝐶𝑟𝑒𝑑𝑖𝑡𝐻𝑜𝑢𝑟𝑠 ≠ 3. This
is unfortunate since it is likely that the vast majority of courses carry three
credits. Accessing the few that do not through an index would therefore be
appropriate. If a histogram showing the distribution of values were available to
the optimizer, it might consider using the index if the condition were rewritten
as CreditHours IN (1,2,4) or

CreditHours = 1 OR CreditHours = 2 OR CreditHours = 4

Similarly, a table scan will be used to resolve a condition of the form WHERE
Name LIKE ‘%son’ since a prefix of the search-key value is not provided.

An index on a column will not contain an entry for a row if the column value
is null, so if you want to search for nulls you cannot use the index. A better
way to handle the situation in that case is to use a default value (e.g., unknown)
instead of null, and search for the default.

Minimize communication. Client/server communication is generally very
expensive, so eliminate it where you can. A major culprit is the cursor, which
invokes communication for every row fetched. Hence, if you are updating a
table, try to use UPDATE statements instead of fetching the row, modifying
it, and then writing it back. For example, an application might adjust the
salary of employees based on the department in which they work. This might
be done using a cursor in which the fetch is followed by a case statement with a
branch for each department. The body of the branch for a particular department
then makes the adjustment appropriate for that department. Alternatively, the
application might use a sequence of UPDATE statements in which the WHERE
clause of each statement in the sequence referred to a different department, and
the SET clause performed the update appropriate to that department. The
second approach involves far less communication, and this might compensate
for any extra index searches or table scans.

If you are retrieving aggregate information, consider computing the aggregate
in a stored procedure and then return only the result to the client. If you must
analyze each row in the application code, see if your DBMS allows the fetch
statement to retrieve multiple rows (some DBMSs support an array fetch).

Be careful with views. The fact that a query that names a view in its FROM
clause is equivalent to a query with the view definition replacing the view name
in the clause (and that it is the latter query that is analyzed by the DBMS).
From this you can conclude that you are not going to get any performance gain
by using a view since there is always an equivalent query that does not involve
the view that will give exactly the same performance. This might seem like old
news, but the really bad news is that the use of a view might actually impact
performance negatively.

Consider the following view defined over the tables COURSE and CLASS

CREATE VIEW CLASSES (C.CrsCode, C.DeptId, C.CrsName,

17

CL.Enrollment, CL.MaxEnrollment) AS
SELECT C.CrsCode, C.DeptId, C.CrsName, CL.Enrollment, CL. MaxEnrollment
FROM COURSE C, CLass CL
WHERE C.CrsCode = CL.CrsCode

The query

SELECT C.CrsCode, C.CrsName
FROM CLASSES

pays the price of a join, whereas the query

SELECT C.CrsCode, C.CrsName
FROM COURSE

achieves the same result without a join because the columns in the result set
are all derived from the columns of a single base table.

Some optimizers, however, can recognize that a join is unnecessary and can
eliminate the overhead.

Consider restructuring the query. There are often several different ways
to formulate a complex query. The cost of each formulation will depend on the
state of the tables involved and the indices available, and there is no easy rule
that you can use to decide which formulation is best, For example, we could
express the query that returns the Ids of all professors who taught a course in
the spring 2003 semester in the following three ways;

SELECT *
FROM PROFESSOR P
WHERE EXISTS

(SELECT *
FROM TEACHING T

WHERE T.Semester = 'S2003' AND T.ProfId = P.Id)

SELECT . *
FROM PROFESSOR P
WHERE iP. Id IN

(SELECT T.ProfId
FROM TEACHING T
WHERE T.Semester = 'S2003')

SELECT DISTINCT P.Id, P.Name, P.DeptId
FROM PROFESSOR P, TEACHING T
WHERE P.Id = T.ProfId AND T.Semester = 'S2003'

The first formulation has a correlated subquery, so it looks bad. However, with
an index on (ProfId, Semester), the subquery can be executed efficiently since
only a few rows match the condition. In the second formulation, the subquery
is only executed once so even if no usable index were available and a table
scan were necessary, the cost might not be excessive. The cost of the third

18

formulation is difficult to predict without knowing more about the state of the
relations involved, and so would also have to be investigated.

Although a sort is generally unavoidable in the plan for a query with a GROUP
BY clause, you should attempt to minimize its cost by making the relation to
be sorted as small as possible. One way to do this is to strengthen the WHERE
clause. For example, the query

SELECT P.DeptId, MAX(P.Salary)
FROM PROFESSOR P
GROUP BY P.DeptId
HAVING P.DeptId IN('CS', 'EE', 'Math')

produces the same result as

SELECT P.DeptId, MAX(P.Salary)
FROM PROFESSOR P
WHERE P.Deptid IN ('CS', 'EE', 'Math')
GROUP BY P.DeptId

but the second formulation has lower cost since nonparticipating rows are elim-
inated earlier.

Tools
DBMS vendors usually provide a variety of tools to help with tuning. The use
of these tools normally requires creation of a mock-up database in which the
different plans can be tried out. A typical tool in most DBMSs is the EXPLAIN
PLAN statement, which lets the user see the query plans the DBMS generates.
This statement is not part of the SQL standard, so the syntax varies among
vendors. The basic idea is first to execute a statement of the form

EXPLAIN PLAN SET queryno=123 FOR
SELECT P.Name
FROM PROFESSOR P, TEACHING T
WHERE _P.Id = T.ProfId AND T.Semester = 'F1994' AND T.Semester = 'CS'

which causes the DBMS to generate a query execution plan and store it as a set
of tuples in a relation called PLAN_TABLE. queryno is one attribute of that
table. Some DBMSs use a different attribute name, for example, id. The plan
can then be retrieved by querying PLAN_TABLE as follows:

SELECT * FROM PLAN_TABLE WHERE queryno=123

Text-based facilities for examining query plans are extremely powerful, but these
days they are used mostly by people who enjoy fixing their own cars. A busy
database administrator uses text-based facilities only as a last resort because
many vendors provide flashy graphical interfaces to their tuning tools. For
instance, IBM has Visual Explain for DB/2, Oracle supplies Oracle Diagnostics
Pack, and SQL Server from Microsoft has Query Analyzer. These tools not only

19

show query plans, but they can also suggest indices that can speed up various
queries.

By examining the query plan, you are in a position to determine whether or not
the DBMS has chosen to ignore the hints you have provided and the indices you
have so carefully created. If you are dissatisfied, you can try other strategies.
More importantly, many DBMSs provide trace tools that allow you to trace the
execution of a query as well as output the CPU and I/O resources used and
the number of rows processed by each step. With a trace tool available, your
strategy should be to coax the DBMS into using a variety of query plans and
to evaluate the performance of each.

Managing Physical Resources
The physical resources—CPUs, I/O devices, etc.—available to the DBMS are an
important factor in the performance of an application, but the application pro-
grammer is generally not in a position to control these resources. Some DBMSs,
however, provide the programmer or database administrator, with mechanisms
for controlling how the existing physical resources should be used.

A disk unit has a single doorway through which each read or write request for
a table or index must pass in sequence. Hence, if many heavily used items are
placed on the disk, a queue of waiting requests will form and response time
will suffer. The lesson here is that many small disks can perform better than
a single large disk because items can be spread across the disks and I/O can
be performed concurrently on different disks. The discussion of RAID (Section
9.1.1) has already made this point. Since the assignment of items to disks can
have a major impact on performance, DBMSs provide mechanisms that allow
the user to specify the disk on which a particular item is placed.

In addition to spreading different tables across the available disks, concurrent
access to a single table can be achieved by partitioning it and distributing
the partitions on different disks. For example, the STUDENT table might be
split into FRESH_STUDENT, SOPH_STUDENTS, JUN_STUDENTS, and
SEN_STUDENTS. Note that in this case all partitions contain rows that are
frequently referenced. If the partitions are placed on different disks, performance
can be improved since multiple I/O requests for information about students can
be performed concurrently.

Beyond distributing files across disks, the next point to note is that reading
a file sequentially (e.g., a table scan) is generally more efficient than reading
data randomly. This follows from the fact that DBMSs attempt to keep the
pages of a file together, and as a result the seek time between the reads of two
successive pages can be eliminated. But it is not so easy to take advantage of
sequential I/O since, in general, a disk will store multiple files. Since requests
for the files from different processes will be interleaved, the disk assembly will
move from one cylinder to another. Thus, even though a process accesses a file
sequentially, two successive requests from the process will pay a seek price since

20

requests from other processes will be interleaved between them. Note that this
is true even if all files on the disk are accessed sequentially. The lesson here is
that if you want to take advantage of the fact that a file is accessed sequentially,
place it on its own private disk. A good example of such a file is the log file
maintained by a database system to implemen atomicity.

In addition to influencing the way I/O devices are employed in an application,
the programmer can influence the way CPUs are used. Generally, a single
process (or thread) is assigned to execute the query plan for a particular SQL
statement. Processes are sequential—they do one thing at a time. Either they
require the services of a CU to execute some code or they request an I/O transfer
and wait until the operation completes. Hence, they make use of one physical
device at a time. As a result, 1 an OLAP environment with only a few concurrent
users, throughput may suffer because resource utilization is low. In an OLTP
environment with many concurrer| users, resource utilization will be high, but
the response time possible when only 4 single process is assigned to execute a
query plan can be unacceptable.

The response time of a query can often be improved using parallel query pro-
cessing in which multiple concurrent processes are assigned to execute different
components of the query plan. Improvement is likely when the system has
multiple CPUs (so the processes can execute simultaneously), the query plan
involves table scans, the query accesses very large tables (so considerable I/O
is required), and the data is spread across multiple disks (so the processes can
be using the disks simultaneously). DBMSs provide mechanisms, called hints
(discussed on page 454), that the application programmer can use to request
parallel query processing.

Influencing the Optimizer
Statistics. cost-based query optimizers use statistics to predict the size of the
output produced by various relational expressions in order to estimate the cost
of a query plan. These statistics describe not only tables but the indices that
can be used to access the tables (for example, the depth, number of leaf pages,
number of distinct search-key values at the leaf level, etc.). Optimizers that use
this information are referred to as cost-based optimizers. They contrast with
rule-based optimizers that make decisions using rules based on the structure
of the SQL statement and the availability of indices but do not attempt to
evaluate the costs involved. The trend in DBMS design is toward cost-based
optimization.

If some statistics are good, more statistics might be even better. Additional
statistics take the form of histograms describing the distribution of values in
particular columns. Advanced query optimizers can make use of such informa-
tion in certain cases.

For example, an employee table might have an integer-valued column Children
that gives the number of children of each employee. Without a histogram the

21

optimizer might be able to determine from the available statistics that the max-
imum value in the column is 9 and that there are 10,000 rows in the table. It
can then conclude that on average, for each value between 0 and 9 there are
1000 employees with that many children. As a result, a query whose result set
contains the rows satisfying the WHERE condition E.Children = 9 might use
a table scan for the access path rather than an unclustered index on Children.
(For example, if there were 500 pages in the table then it is likely that at least
one row describing a fertile employee is contained in most pages.)

With a histogram the optimizer can do much better. Since the histogram con-
tains the number of rows having each column value, the optimizer is in a position
to determine that only two employees have nine children and, as a result, an
access path that uses the index on Children is far superior to a table scan.

Maintaining a histogram is a time-consuming process. Hence, DBMSs that
make use of histograms provide the programmer with a mechanism to specify
the columns over which histograms are to be constructed. If you have been
reading carefully, you probably have noticed that we are describing an approach
here that contradicts what was said in Section Disk Caches. There we argued
that it was desirable to use host variables instead of literals so that query plans
could be reused. Here we have made the point that literals are preferable since
they allow the optimizer to use histograms. The choice of which to use has to
be made for each specific application.

Care and feeding. Although a system might function efficiently when it is
initially configured, you might discover that, over time, performance degrades
even though the load is unchanged. This might be due to changes in the state
of the database. Even though the size of tables might remain roughly the same,
as rows are added and deleted the organization of the tables and indices might
deteriorate. For example, although the pages of a B+ tree might initially be
full, the steady state situation might be one in which the occupancy of pages
might be low. Although this might not cause the tree to be deeper, it might
substantially increase the number of leaf pages, and hence the cost of scans
at the leaf level. Similarly, the space created by deleted rows in a heap file is
often not recovered since rows are added at the end. As a result, the cost of
table scans is increased. Each DBMS has its own quirks in the way it stores
information that may result in similar inefficiencies. Check your manual.

Maintaining statistics is time consuming, and hence statistics are not normally
updated each time the value of a table changes. Instead, the DBMS supports
a command that causes it to reevaluate statistics. It can be invoked by the
programmer at a time when the state of the table has substantially changed
since the last time the statistics were evaluated. The use of outdated statistics
can lead to poor query plans. Furthermore, since the query plans of stored
procedures might be saved, stored procedures that access dynamically changing
tables should be recompiled frequently. Similarly, if indices of tables referred to
by a stored procedure change, the procedure should be recompiled.

22

Hints. Some DBMSs allow the programmer to insert suggestions, called hints,
into an SQL statement that the query optimizer can use in constructing a query
plan. For example, there are N! different orders in which N tables can be joined,
and that the optimizer cannot explore all possibilities even when N is small. A
major problem in joining tables is the I/O and storage costs of manipulating
large intermediate tables. The wrong order can result in huge intermediate
tables, which are reduced to just a few rows in the final step. Promising orders
are those in which the first table to be joined is one in which the WHERE clause
includes a selective condition that eliminates many rows that cannot possibly
play a role in forming a row in the result set. Eliminating such rows early
prevents them from producing useless rows at intermediate stages.

Unfortunately, it might be difficult for the optimizer to detect that a condition
is selective. For example, although a condition such as T.Model = ‘Rolls Royce’
on a table containing the inventory of Slippery Joe’s Used Cars might be very
selective, the optimizer might have no way of knowing that. Even if a histogram
were maintained on the attributes of the table, the optimizer would be stymied
if ‘Rolls Royce’ were replaced by a host variable :model. Although the optimizer
might not have enough information, the programmer probably does. He can list
the tables in the FROM clause in the desired join order and provide a hint to
the effect that the optimizer should use that order in the query plan.

Hints can cover many issues. For example, different databases allow you to
specify the join methodology to use (hash, sort-merge, etc.), the index to use,
whether parallel query execution should be considered, and whether to optimize
a query plan so that it retrieves the first row of a result set quickly (for fast
response time for an interactive query) or whether it should minimize the time
for retrieving the entire result set (for batch queries).

Useful online references to understand relevant subtopics
What is the difference between hashing and indexing?

Comparison of B-Tree and Hash Indexes

Clustered vs Non-clustered Index - Key Differences with Example

23

https://stackoverflow.com/questions/13470688/what-is-the-difference-between-hashing-and-indexing#13472833
https://dev.mysql.com/doc/refman/8.0/en/index-btree-hash.html
https://www.guru99.com/clustered-vs-non-clustered-index.html

	Database Tuning
	Disk Caches
	Tuning the Cache
	Tuning the Schema
	Denormalization
	Repeating Groups
	Partitioning

	Tuning the Data Manipulation Language
	Tools
	Managing Physical Resources
	Influencing the Optimizer
	Useful online references to understand relevant subtopics

