
Contents presented here have been taken from 2nd Chapter Intro-
duction to Relational Databases of the book Database Systems An
Application-Oriented Approach 2nd Edition by Michael Kifer, Arthur
Bernstein and Philip M. Lewis

Introduction to Relational Databases
Table, Rows and columns
In Relational databases data is stored in tables.

For example, Student Registration System might include the STUDENT table.

Table 1: The table STUDENT. Each row describes a single student.

Id Name Address Status
1111111 John Doe 423 Main St. Freshman
666666666 Joseph Public 666 Hollow Rd. Sophomore
111223344 Mary Smith 1 Lake St. Freshman
987654321 Bart Simpson Fox 5 TV Senior
023456789 Homer Simpson Fox 5 TV Senior
123454321 Joe Blow 6 Yard Ct. Junior

• A table contains a set of rows. Each row contains information about one
student.

• Each column of the table describes the student in a particular way.
• In example above the columns are id, Name, Address, and Status.
• Each column has an associated type, called its domain, from which the

value in a particular row for that column is drawn. For example the
domain for Id is integer and the domain for Name is string.

This database model is called “relational” because it is based on the mathemat-
ical concept of relation.

A mathematical relation captures the notion that elements of different sets
are related to one another.

For example, John Doe, an element of the set of all humans, is related to 123
Main St., an element of the set of all addresses, and to 1111111111, an element
of the set of all Ids.

A relation is a set of tuples.

For example, of the table STUDENT, we might define a relation called STU-
DENT containing the tuple (1111111, John Doe, 423 Main St., Freshman).

1



Table 2: Correspondence between tables and relations

Tables Relations
Rows Tuples
Columns Attributes

Operations on tables are mathematically defined
In most applications, the database is under the control of a database manage-
ment systems (DBMS). When an application wants to perform an operation on
the database, it does so by making a request to the DBMS.

A typical operation might

• extract some information from the rows of one or more tables,
• add rows, or
• delete rows.

In addition to the fact that tables in the database can be modeled by mathe-
matical relations, operations on the tables can also be modeled as mathematical
operations on the corresponding relations.

Thus, a particular unary operation might take a table, T, as an argument and
produce a result table containing a subset of the rows of T.

For example:

1. an instructor might want to display the roster of students registered for a
course. Such a request might involve scanning the TRANSCRIPT table,
locating the rows corresponding to the course, and returning them to the
application.

2. a particular binary operation might take two tables as arguments and
construct a new table containing the union of the rows of the argument
tables.

A complex query against a database might be equivalent to an expression in-
volving many such relational operations involving many tables.

Because of this mathematical description, relational operations can be precisely
defined and their mathematical properties, such as commutativity and associa-
tivity, can be proven.

This mathematical description has important practical implications. Commer-
cial DBMSs contain a query optimizer module that converts queries into expres-
sion involving relational operations and then uses these mathematical properties
to simplify those expressions and thus optimize query execution.

2



SQL:
Basic SELECT statement

An application describes the access that it wants the DBMS to perform on its
behalf in a language supported by the DBMS. We are particularly interested
in SQL, the most commonly used database language, which provides facilities
for accessing a relational database and is supported by almost all commercial
DBMSs.

The basic structure of the SQL statements for manipulating data is straight-
forward and easy to understand. Each statement takes one or more tables as
arguments and produces a table as a result. For example, to find the name of
the student whose Id is 987654321, we might use the statement

SELECT Name
FROM STUDENT
WHERE Id = 987654321

More precisely, this statement asks the DBMS to extract from the table named
in the FROM clause—that is, the table STUDENT—all rows satisfying the
condition in the WHERE clause—that is, all rows whose Id column has value
987654321—and then from each such row to delete all columns except those
named in the SELECT clause—that is, Name. The resulting rows are placed in
a result table produced by the statement. In this case, because Ids are unique,
at most one row of STUDENT can satisfy the condition, and so the result of
the statement is a table with one column and at most one row.

Thus, the FROM clause identifies the table to be used as input, the WHERE
clause identifies the rows of that table from which the answer is to be generated,
and the SELECT clause identifies the columns of those rows that are to be
output in the result table.

The result table generated by this example contains only one column and at
most one row. As a somewhat more complex example, the statement

SELECT Id, Name
FROM STUDENT
WHERE Status = 'senior'

returns a result table containing two columns and multiple rows:

Table 3: The database table returned by the SQL SELECT state-
ment

Id Name
987654321 Bart Simpson
023456789 Homer Simpson

3



the Ids and names of all seniors. If we want to produce a table containing all
the columns of STUDENT but describing only seniors, we use the statement

SELECT *
FROM STUDENT
WHERE Status = 'senior'

The asterisk is simply shorthand that allows us to avoid listing the names of
all the columns of STUDENT. In some situations the user is interested not in
outputting a result table but in information about the result table. An example
is the statement

SELECT COUNT(*)
FROM STUDENT
WHERE Status = 'senior'

which returns the number of rows in the result table (i.e., the number of seniors).
COUNT is referred to as an aggregate function because it produces a value that
is a function of all the rows in the result table. Note that in this case, the
SELECT statement produces a table that has only one row and one column.

The WHERE clause is the most interesting component of the SELECT state-
ment, it contains a general condition that is evaluated over each row of the table
named in the FROM clause. Column values from the row are substituted into
the condition, yielding an expression that has either a true ora false value. If the
condition evaluates to true, the row is retained for processing by the SELECT
clause and then stored in the result table. Hence, the WHERE clause acts as a
filter.

Conditions can be much more complex than we have seen so far: A condition
can be a Boolean combination of terms. If we want the result table to contain
information describing seniors whose Ids are in a particular range, for example,
we might use

WHERE Status = 'senior' AND Id > '888888888'

OR and NOT can also be used. Furthermore, a number of predicates are pro-
vided in the language for expressing particular relationships. For example, the
IN predicate tests set membership.

WHERE Status IN ('freshman', ‘sophomore')

Additional aggregates and predicates and the full complexity of the WHERE
clause will be discussed separately in upcoming chapters.

Multi-table SELECT statements

The result table can contain information extracted from several base tables.
Thus, if we have a table TRANSCRIPT with columns StudId, CrsCode,
Semester, and Grade, the statement

4



SELECT Name, CrsCode, Grade
FROM STUDENT, TRANSCRIPT
WHERE StudId = Id AND Status = 'senior'

can be used to form a result table in which each row contains the name of a
senior, a particular course she took, and the grade she received.

The first thing to note is that the attribute values in the result table come from
different base tables: Name comes from STUDENT; CrsCode and Grade come
from TRANSCRIPT. As in the previous examples, the FROM clause produces
a table whose rows are input to the WHERE clause. In this case the table is the
Cartesian product of the tables listed in the FROM clause: a row of this table
is the concatenation of a row of STUDENT and a row of TRANSCRIPT. Many
of these rows make no sense. For example, Bart Simpson’s row in STUDENT
is not related to a row in TRANSCRIPT describing a course that Bart did
not take. The first conjunct of the WHERE clause ensures that the rows of
TRANSCRIPT for a particular student are associated with the appropriate
row of STUDENT by matching the Id values of the rows of the two tables.
For example, if TRANSCRIPT has a row (987654321, CS305, F1995, C), it
will match only Bart Simpson’s row in STUDENT, producing the row (Bart
Simpson, CS305, C) in the result table.

Query optimization.

One very important feature of SQL is that the programmer does not have to
specify the algorithm the DBMS should use to satisfy a particular query.

For example, tables are frequently defined to include auxiliary data structures,
called indices, which make it possible to locate particular rows without using
lengthy searches through the entire table. Thus, an index on the Id column
of the STUDENT table might contain a list of pairs (Id, pointer) where the
pointer points to the row of the table containing the corresponding Id. If such
an index were present, the DBMS would automatically use it to find the row
that satisfies the query query1.

If the table also had an index on the column Status, the DBMS would use that
index to find the rows that satisfy the query query2.

If this second index did not exist, the DBMS would automatically use some
other method to satisfy (query2)—for example, it might look at every row in
the table in order to locate all rows having the value senior in the Status column.
The programmer does not specify what method to use—just the condition the
desired result table must satisfy.

In addition to selecting appropriate indices to use, the query optimizer uses
the properties of the relational operations to further improve the efficiency with
which a query can be processed—again, without any intervention by the pro-
grammer. Nevertheless, programmers should have some understanding of the
strategies the DBMS uses to satisfy queries so they can design the database

5



tables, indices, and SQL statements in such a way that they will be executed in
an efficient manner consistent with the requirements of the application.

Changing the contents of tables

The following examples illustrate the SQL statements for modifying the contents
of a table. The statement

UPDATE STUDENT
SET Status = 'sophomore'
WHERE Id = '111111111'

updates the STUDENT table to make John Doe a sophomore. The statement

INSERT
INTO STUDENT (Id, Name, Address, Status)
VALUES ('999999999', 'Winston Churchill', '10 Downing St', 'senior')

inserts a new row for Winston Churchill in the STUDENT table.

The statement

DELETE
FROM STUDENT
WHERE Id = '1111111111'

deletes the row for John Doe from the STUDENT table. Again, the details of
how these operations are to be performed need not be specified by the program-
mer.

Creating tables and specifying constraints

Before you can store data in a table, the table structure must be created. For
instance, the STUDENT table could have been created with the SQL statement

CREATE TABLE STUDENT (
Id INTEGER,
Name CHAR(20),
Address CHAR(50),
Status CHAR(10),
PRIMARY KEY (Id) )

where we have declared the name of each column and the domain (type) of the
data that can be stored in that column. We have also declared the Id column to
be a primary key to the table, which means that each row of the table must have
a unique value in that column and the DBMS will (most probably) automatically
construct an index on that column. The DBMS will enforce this uniqueness
constraint by not allowing any INSERT or UPDATE statement to produce a
row with a value in the Id column that duplicates a value of Id in another row.
This requirement is an example of an integrity constraint (sometimes called a

6



consistency constraint)an application-based restriction on the values that can
appear as entries in the database.

We have given simple examples of each statement type to highlight the con-
ceptual simplicity of the basic ideas underlying SQL, but be aware that the
complete language has many subtleties. Each statement type has a large num-
ber of options that allow very complex queries and updates. For this reason,
mastery of SQL requires significant effort.

7


	Introduction to Relational Databases
	Table, Rows and columns
	Operations on tables are mathematically defined
	SQL:
	Basic SELECT statement
	Multi-table SELECT statements
	Query optimization.
	Changing the contents of tables
	Creating tables and specifying constraints



