
Credits: contents presented here are taken from the book Database
Systems An application oriented approach 2nd Edition by Michael
Kifer, Arthur Bernstein, Philip M. Lewis

What is a transaction?
Databases frequently store information that describes the current state of an
enterprise. For example, a bank’s database stores the current balance in each
depositor’s account. When an event happens in the real world that changes the
state of the enterprise, a corresponding change must be made to the information
stored in the database. With online DBMSs, these changes are made in real
time by programs called transactions, which execute when the real-world event
occurs.

For example, when a customer deposits money in a bank (an event in the real
world), a deposit transaction is executed. Each transaction must be designed so
that it maintains the correctness of the relationship between the database state
and the real-world enterprise it is modeling. In addition to changing the state of
the database, the transaction itself might initiate some events in the real world.
For example, a withdraw transaction at an automated teller machine (ATM)
initiates the event of dispensing cash.

Credit card approval is only one example of a transaction that you executed on
your vacation in Tokyo. Your flight arrangements involved a transaction with
the airline’s reservation database, your passage through passport control at the
airport involved a transaction with the immigration services database, and your
check-in at the hotel involved a transaction with the hotel reservation database.
Even the phone call you made from your hotel room to tell your family you had
arrived safely involved transactions with the hotel billing database and with a
long-distance carrier to arrange billing and to establish the call.

Other examples of transactions you probably execute regularly involve ATM
systems, supermarket scanning systems, and university registration and billing
systems. Increasingly, these transactions entail access to distributed databases:
multiple databases managed by different DBMSs stored at different geographical
locations.

What is a transaction processing system?
A transaction processing system (TPS) includes one or more databases that
store the state of an enterprise, the software for managing the transactions
that manipulate that state, and the transactions themselves that constitute the
application code. In its simplest form the TPS involves a single DBMS that
contains the software for managing transactions. More complex systems involve
several DBMSs. In this case, transaction management is handled both within the

1



DBMSs and without, by additional code called a TP monitor that coordinates
transactions across multiple sites (see Figure 1.1).

Figure 1: Structure of a transaction processing system

Because of the requirement that a transaction processing application must
maintain an accurate model of the state of the enterprise, the execution of
transactions is constrained by certain properties that do not apply to ordinary
programs. These special properties are frequently referred to using the acronym
ACID: Atomic, Consistent, Isolated, Durable.

Consistency
Think of a database as playing both an active and a passive role in relation to
the real world enterprise that it models.

In its passive role, it maintains the correspondence between the database state
and the enterprise data. For example, the Student Registration System must
accurately maintain the identity and number of students who have registered
for each course. In its active role, it enforces certain rules of the enterprise.
For example the number of students registered for a course must not exceed
the maximum enrollment for that course. A transaction that attempts to
register a student for a course that is already full must not complete successfully.
Consistency is the term that is used to describe these issues and it has two aspects.
Internal consistency: It is often convenient to store the same information in
different forms. For example, we might store the number of students registered
for a course as well as a list whose entries name each student registered for the
course. A database state in which the length of the list is not equal to the number
of registrants is not allowed. Enterprise rules: Enterprise rules restrict the
possible state of the enterprise. When such a rule exists, the possible state of
the database are similarly restricted. The rule relating the number of registrants
and the maximum enrollment in a course is one example. The restrictions are
referred to as integrity constraints or consistency constraints.

2



Atomicity
The system must ensure that either the transaction runs to completion or if it
does not complete, it has no effect at all (as if it had never been started).

If a transaction successfully completes and the system agrees to preserve its
effects, we say that it has committed. If the transaction does not successfully
complete we say that it has aborted, and the system must ensure that whatever
changes the transaction made to the database are undone or rolled back. Why
transactions abort? A transaction might be aborted for several reasons.

One possibility is that the system crashes during its execution(before it commits).
Other possibilities include the following: Allowing the transaction to complete
would cause a violation of an integrity constraint. Allowing the transaction
to complete would violate the isolation requirement, meaning that there is
a possibility of a “bad interaction” with another executing transaction. The
transaction is involved in a deadlock, meaning two or more transactions are each
waiting for the others to complete, and hence none would complete if the system
did not abort one of them.

Durability
The system must ensure that once the transaction commits, its effects remain in
the database even if the computer or medium on which the database is stored
subsequently fails.

Durability can be achieved by storing data redundantly on different backup
devices. In real world we want the committed data in our system to survive the
following events:

• CPU crash
• Disk failure
• Multiple disk failures
• Fire
• Malicious attacks

Isolation
In discussing atomicity, consistency, and durability, we concentrated on the
effect of a single transaction. We next examine the effect of executing a set of
transactions. We say that a set of transactions is executed sequentially or serially,
if one transaction in it is executed to completion before another is started. Hence,
at any given time only one transaction is being processed.

When the first transaction in the set starts, the database is in a consistent state
and, since the transaction is consistent, the database will be consistent when
the transaction completes. Since the database is consistent when the second
transaction starts, it too will perform correctly, and the argument repeats.

3



Modern computing systems are capable of servicing more than one transaction
simultaneously, we refer to this mode of execution as concurrent execution.
Concurrent execution is appropriate in a TPS serving many users. In this case,
there are many active, partially completed transactions at any given time.

In concurrent execution, the database operations of different transactions are
effectively interleaved in time, as shown in figure below:

Figure 2: Concurrent Execution of transactions

Link to video lecture

4

https://www.youtube.com/watch?v=LLDNsfQ0J0Y&amp

	What is a transaction?
	What is a transaction processing system?
	Consistency
	Atomicity
	Durability
	Isolation


