
Concurrency Control
In a multiprogramming environment where multiple transactions can be exe-
cuted simultaneously, it is highly important to control the concurrency of trans-
actions. We have concurrency control protocols to ensure atomicity, isolation,
and serializability of concurrent transactions. Concurrency control protocols
can be broadly divided into two categories:

1. Lock based protocols
2. Time stamp based protocols

Lock-based Protocols
Database systems equipped with lock-based protocols use a mechanism by which
any transaction cannot read or write data until it acquires an appropriate lock
on it. Locks are of two kinds −

Binary Locks: A lock on a data item can be in two states; it is either locked
or unlocked.

Shared/exclusive : This type of locking mechanism differentiates the locks
based on their uses. If a lock is acquired on a data item to perform a write
operation, it is an exclusive lock. Allowing more than one transaction to write
on the same data item would lead the database into an inconsistent state. Read
locks are shared because no data value is being changed.

There are four types of lock protocols available −

Simplistic Lock Protocol
Simplistic lock-based protocols allow transactions to obtain a lock on every
object before a ‘write’ operation is performed. Transactions may unlock the
data item after completing the ‘write’ operation.

Pre-claiming Lock Protocol

Figure 1: Pre-claiming

Pre-claiming protocols evaluate their operations and create a list of data items
on which they need locks. Before initiating an execution, the transaction re-
quests the system for all the locks it needs beforehand. If all the locks are

1



granted, the transaction executes and releases all the locks when all its opera-
tions are over. If all the locks are not granted, the transaction rolls back and
waits until all the locks are granted.

Two-Phase Locking 2PL
This locking protocol divides the execution phase of a transaction into three
parts. In the first part, when the transaction starts executing, it seeks permis-
sion for the locks it requires. The second part is where the transaction acquires
all the locks. As soon as the transaction releases its first lock, the third phase
starts. In this phase, the transaction cannot demand any new locks; it only
releases the acquired locks.

Figure 2: Two Phase Locking

Two-phase locking has two phases, one is growing, where all the locks are being
acquired by the transaction; and the second phase is shrinking, where the locks
held by the transaction are being released.

To claim an exclusive (write) lock, a transaction must first acquire a shared
(read) lock and then upgrade it to an exclusive lock.

Strict Two-Phase Locking
The first phase of Strict-2PL is same as 2PL. After acquiring all the locks in
the first phase, the transaction continues to execute normally. But in contrast
to 2PL, Strict-2PL does not release a lock after using it. Strict-2PL holds all
the locks until the commit point and releases all the locks at a time.

Figure 3: Strict Two Phase Locking

Strict-2PL does not have cascading abort as 2PL does.

2



Timestamp-based Protocols
The most commonly used concurrency protocol is the timestamp based protocol.
This protocol uses either system time or logical counter as a timestamp.

Lock-based protocols manage the order between the conflicting pairs among
transactions at the time of execution, whereas timestamp-based protocols start
working as soon as a transaction is created.

Every transaction has a timestamp associated with it, and the ordering is de-
termined by the age of the transaction. A transaction created at 0002 clock
time would be older than all other transactions that come after it. For example,
any transaction ‘y’ entering the system at 0004 is two seconds younger and the
priority would be given to the older one.

In addition, every data item is given the latest read and write-timestamp. This
lets the system know when the last ‘read and write’ operation was performed
on the data item.

Timestamp Ordering Protocol
The timestamp-ordering protocol ensures serializability among transactions in
their conflicting read and write operations. This is the responsibility of the
protocol system that the conflicting pair of tasks should be executed according
to the timestamp values of the transactions.

• The timestamp of transaction Ti is denoted as TS(Ti).
• Read time-stamp of data-item X is denoted by R-timestamp(X).
• Write time-stamp of data-item X is denoted by W-timestamp(X).

Timestamp ordering protocol works as follows:

If a transaction Ti issues a read(X) operation:

• If TS(Ti) < W-timestamp(X)
• Operation rejected.
• If TS(Ti) >= W-timestamp(X)
• Operation executed.
• All data-item timestamps updated.

If a transaction Ti issues a write(X) operation:

• If TS(Ti) < R-timestamp(X)
• Operation rejected.
• If TS(Ti) < W-timestamp(X)
• Operation rejected and Ti rolled back.
• Otherwise, operation executed.

3



Thomas’ Write Rule
This rule states if TS(Ti) < W-timestamp(X), then the operation is rejected
and Ti is rolled back.

Time-stamp ordering rules can be modified to make the schedule view serializ-
able.

Instead of making Ti rolled back, the ‘write’ operation itself is ignored.

4


	Concurrency Control
	Lock-based Protocols
	Simplistic Lock Protocol
	Pre-claiming Lock Protocol
	Two-Phase Locking 2PL
	Strict Two-Phase Locking
	Timestamp-based Protocols
	Timestamp Ordering Protocol
	Thomas' Write Rule


